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Abstract

The decay of isotropic turbulence in a compressible flow is ex_aed by _ nu'

merical simulation (DNS). A priori analyses of the DNS data are then performed to
evaluate three subgrid-scale (SGS) models for large-eddy simulation (LESi: a gener-

alized Smagorinsky model (Mt)[J. _Fluid Mech., 238, t (1992)], a stress-similarity

model (M2) [J. Fluid Mech., 275, 83 {1994)], and a gradient model (M3) [Theoret.

_Comput. Fluid Dynamics, 81 309 (1996)]. The models exploit one-parameter _Second-

or fourth-order filters of Pade type, which permit the cutoff wavenumber kc to be

tuned independently of the grid increment Az. The modeled (M) and exact (E) SGS-

stresses are compared component-_vise by correlation coefficients of the form C(E, M)

computed over the entire three-dimensional fields. In general, M1 correlates poorly

against exact stresses (C < 0.2), M3 correlates moderately well (C _ 0.6), and M2

correlates remarkably well (0.8 <: C < 1.0). Specifically, correlations C(E, M2) are

high provided the grid and test filters are _the same order. Moreover, the highest

correlations (C _ 1.0) result whenever the grid and test filters are identical (in,both
order and cutoff). Finally, present results reveal the ezact SGS stresses obtained by

grid filters of differing orders to be onlymoderateiy well correlated. Thus, in LES the

model should not be specified independently of the filter.
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1 Introduction E

By definition,directnumerical simulation-(DNS)isthe numerical solution of the Navier-

Stokes equations without recourse to empirical models. In concept, the fluidmotions are

resolveddown totbe KolmOgorov ws_enumber/_, _ which eddies succumb to viscous dissi-

pation. In seneral,_ _omputational workload forfully-r_DNS sc_es _ Re, where

Re isthe Re_ umber. Forthe complex, high-Reynolds.numberflows ofen_itmering in-

terest,the computational requirements ofDNS are staggeringand prohibitive.Consequently,

large-eddy simulation (LES) remains an attractive(and necessary) alternative.

In _t to_.DNS, LES is__au a decomposition of_ flow-fieldvariables into

resolved and u_ved (subgdd) scales. The decomposition iseffected by a spatialgr/d

filteringoperation with an associated_wave-number kc. Thegrid-Rltered Navier-Stokes

equ  io inte  -
tions between the smaller (/c_:_kc) _ Isrser (k < kc) scalesof motion. The largerscales

are resolved in space_and time on a suitablecomlmtational grid;however, the SGS stresses

are modeled or oth_ approximated.

The relationshipbetween DNS and (i_i_d.. _LES isillustratedin Fig. i,which presents

the Kolmogorov ener_'_S__ The_inertialrange of the _trum is characterized by

energy deeay at the.rateE(k) _ k-s/_,BFimplication, _ varieswKhthe cutoffkc;that is,

r_ - _'_(/¢c).For DNS,/_ -/¢_ and, for allpracticalpurposes, _-_(k_)- 0.

A generalcriticismofLES:[I_:_ that the-truncationerrorsof the numerical method often

contaminate the SGS dimipatio"n. There is@owing realization(e._.,Vasilyev et al.[2])that

thissituationcan be avoided by indepetdent _ 0fthe gridresolutionAz" and the

W_venumber cutoK__. (Throughout thiswork, asterisksd_ dimensional qulntiti_) _In

our view, k] should be specifiedon the basisof physicalconsiderations;that is,k_ should lie

in the inertialrange ofthe Kolmogorov spectrum (Fig. 1). On the other hand, A_* should be

determined by numerical considerations;that is,by the grid resolutionnecessary to resolve

the smallest eddies (those of wavelength A_ = 2_r//_).forthe n_merics/scheme of choice.



For example, spectral, sixth-order, fourth-order, and second-order difference approximations

typically require 2, 10, 16, and 32 gridpoints, respectively, per wavelength of the smallest

resolved scale. If we define the dimensionless wavenumber c_ _= k'Az °, then ac - k_Ax °

defines the dimensionless filter cutoff. It is highly desirable, therefore, to exploit continuously

tunable filters, whose cutoffs ac are not "hard-wired" to the grid resolution. For this purpose,

we adapt one-parameter families of filters of Pade type, as described in Lele [3].

Our present work parallels the experimental investigations of Liu et al. [4] and the

computational work of Vreman et al. [51. Each paper evaluates the potential of candidate

SGS models by means of a priori analyses. (The latter work also performs a posteriori

analyses.) In their ground-breaking experiment, Liu et al. [4] investigated the structure of

turbulence in the far field of an axisymmetric water jet by means of particle-displacement

velocimetry. By planar filtering of the velocity data, they reconstructed (2D slices) of three

components of the exact SGS-stress tensor and correlated various modeled stresses against

their exact counterparts. To our knowledge, their experiment represents the first a priori

analysis conducted with experimental rather than computational data. Two of the models

considered by Liu et al. [4] were the standard (incompressible) Smagorinsky model and

a stress-similarity model. In Vreman et al. [5], three candidate SGS models (and their

dynamic counterparts) were evaluated by both a priori and a posteriori analyses, using

data obtained by DNS of a weakly compressible turbulent mixing layer. Specifically, they

examined Smagorinsky, similarity, and gradient [6, 7] models.

In the present paper, we evaluate, for the case of decaying isotropic turbulence, the three

models considered by Vreman et al. [5]. Our evaluation is limited to a priori analysis only

and has a different focus than the work of Vreman et al. [51. Whereas, they exploit a top-hat

filter with a fixed filter width (twice the grid increment) and focus on the SGS models, we

exploit Pare-type filters and focus specifically on the effects of the filter. In particular, we

examine the effects of the cutoff and the order property of the filter on the fidelity of the

models.

The next section discusses our two candidate filters: second- and fourth-order filters of
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Pade type with continuous variation of the cutoff a_. In Section 3, we present the unfiltered

and filtered compressible Navier-Ste4ms equations, which serve as the governing systems for

DNS and LES, respectively.Section 4 describes the threeSGS models to be considered:

the generalized Smagorinsky model of Erlebacher et al. [8],the stress-similaritymodel of

Liu et aL [4],and the generalized_Clark model of Vreman et al. [7].Section 5 presents

parameters of the test flow: decaying isotropic turbulence. The a priori analysis is presented

in Sectien 6. In particular, we present correlations between the exact SGS-stress components

and their modeled counterparts. A brief discussion of the results is presented in Section 7,

and conclusions are offered in Section 8.

2 One-Parameter, Low-Pass Filters

Many types of spatial,linear,low-pass filterscan be used for LES, the most popular being

top-hat, Gaussian, and spectral filters. The properties of admissible filters can be found in

many sources, including Erlebacher et al. [8].

Following_ [3], we consider one-parameter families of filters of Pade type that are both

symmetric and positive semidefmite_ The positivity of these filters ensures that tire SGS,

stresstensorisrealizablein thesense of Vreman et al.[9].A falterisbestmaderstood in terms

of itstransferfunction,which depicts itseffecton modes .ofwavenumber a. The transfer

functions of a family of second_order_Pade filtersare shown inFig, 2 _r.selected values

of the cutoffc_c.The dissipationimposed by the filtervariescontinuously over the range

0 < ac _<It,decreasing with increasinga_. Specificallyac - _rturns offthe filter,ac = _r/2

resultsin the discretetop-hat filter(with weights at adjacent nodes of [!/4, 1/2, 1/4]),and

ac _ 0 resultsin extreme dissipation.In general,one-parameter filtersare advantageous

relativeto fixed-widthfiltersin that ac can be adjusted so as to specifykc independently of

Az. For some purposes, we willalsoexploita one-parameter, fourth-order Pade filterwith

the same parameter range. Detailsof the both filtersare relegatedto the Appendix.

For our present purposes, multidimensional filtering is accomplished by filtering succes-

4



sively in each coordinate dimension. The same cutoff is exploited in each dimension.

3 Governing Equations

For DNS, the Navier-Stokes equations are solved numerically on a grid sufficientlyfineto

resolveallenergeticscalesof motion. :,

Compressible Navier-Stokes Equations3.1

In tensor notation, the dimensionless equations governing the evolution of an ideal gas in

time t and Cartesian space x = [xl, x2, xs] are

_Op +
Ot Oxk

O(puk) O( kut)
_.{-

Ot Oxl

O(Er) O[(ET + p)u_]
_+

Ot Ox_

= 0

Op I Oakl

OXk Re Oxt

Oh#. % 10(ulakt)
Oxk Re Oxk

(1)

where

Ev

T
e = (2)

hk --

7(7- 1) M2

OT

(7 - 1)_PrRe Oxk

and repeated indices imply summation. Here, p, p, T, e, ET, #, and _ are density, ther-

modynamic pressure, absolute temperature, s_ific internal energy, total energy, dynamic

viscosity, and thermal conductivity, respectively, and u = [ul,u2,u3] is the velocity vec-

tor. The quantities above have been rendered dimensionless by the choice of a refer-

ence length scale L* and suitable reference values (denoted by subscript "r") as follows:
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t = t'u_lL" x_ = x;IL"
i ==

T = T'IT_ uk = uklur
p = p'lp; ' _ _p:=_ p'7(p_.,,?)

= #*I#'(T;) _ = _'i_*(T;)

e -" e* u _,_r::;;:;= . Et --:-_tl_,Pr r )

(3)

From the nondimensionalizations above, four dimensionless p_eters arise: the Reynolds

number, the Mach number, the Prandtl number, and the ratio of specific heats. These are

defined, respectively, as follows: ...........

, ,lit t

M=

Pr

_=
C:

(4)

Here, C_ and C_ are the specific heats at constant pressure and co'ant volume, respectively,

and R* is the ideal gas constant. Throughout this work, we presume the constant values

3' = 1.4 and Pr - 0.7. The viscous stress tensor ak_ is defined

2

akt = 2_S_ - _DSk_
(5)

where 6,1 is the Kronecker delta, D = -_ is the compressible dilatation, and S_l is the

symmetric strain-rate tensor defin_as

Equations 1 describe the conservation of mE, momentum, and energy, resp_tively. The

governing system isclosed by imposing an equ_on of state for=an ideal gas, namely

pT
p = _-_ = (3'- _)p_ (7)

The variation of # with respect to T is modeled by Sutherland's law, and _ = #/Pr.
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3.2 Favre-Filtered Navier-Stokes Equations

For LES of compressible flow, density-weighted (Favre) filtering arises naturally from the

use of conservative variables. For example, the Favre-filtered velocity components, denoted

m

Puk

(_t = _-_)

by tildes, are given by

(8)

The Favre-filtered continuity equation is form invariant; that is,

=o (9)

as is the filtered equation of state 1_ : _/(7M2) • However, the momentum equation acquires

the following filtered form:

__ a(_fikfi,) a_ 1 aatt O'rt, (10)o(pat) + = ___ + + __
& oxl Oxi: Re Oxl Ox_

where _'_ is the SGS-stress (or the residual-stress) tensor. For compressible flow, the residual-

stress tensor assumes the form

(11)

As written, Eq. 10 is exact; however, in practice it becomes inexact because @At, being

unavailable, is usually approximated from Stl and _, with residual stresses due to their

nonlinear interactions being neglected. Following Erlebacher et al. [8], an alternate form of

the dimensionless grid-filtered energy equationis

0(/T_t) _!_-,,.i:0 ,_ _e 1- 10Qk _(12)+ _x_ = -(7 - 1)_/_ + ]_/2_0T_ + _ + _'M 20Xt

where the dissipation function is

Out 2 2
. (13)

and the residual heat-flux vector is

(14)
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Equation 12 is inexact because it has_ derived by neglecting certain pressure-velocity

terms, and because, in practice, the term/_az_-aT-"is typically approximated from the resolved

scales.

4 Subgrid-Scale Stress (SGS) Models

We consider three residual-stress models, denoted M1, M2, and M3, as described, respec-

tively,below.

4.1 Generalized Smagorinsky Model'(Ml)

•A r.neraliz_tionof the Sma_rinsky model to compremible_-flowis presented in Erlebacher

et al. [8],which we adapt as follows. Let MRkt denote the modeled residual-stresstensor

such that

MRk, = Iz'r($kl- 1 -
_D6_,) (15)

where Sij isthe resolved-scalestrain-ratetensor,and/Jr isthe eddy viscositydefined as

= 2ORA_.ISI ; iSI = _ (16)

Here, C_ is a model _t, and A is a char_teristic length sca_ related to the grid spacing.

Typically A = _/Az_ + _kyz + Az _. Similar_, the modeled residual he,_t-flux vector MQk

is given by

MQ_ = c,a=  tSl (17)

where Cq isa model coastant relatedto CR thro_h the turbulent Prandtl mlmber PrT.

4.2 Scale-Similarity Model (M2)

On the basis of theirexperimental observations,Liu et al.

flow) the simple stress-similaritymodel

8
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where cc is a constant, and £kl is the resolved-turbulent-stress tensor.: A computable quan-

tity, £_ is extracted from the resolved fields by applying a second filter, termed the test filter

and denoted by a hat.: Specifically,

(19)

In general, the cutoffsassociated with the grid and testfiltersmay be different.Bardina's

[10]model isthe specialcase of Eq. 18 for which CL = 1 and r -- I, where r - _/A, and

and A are the filterwidths associated with the testand grid filters,respectively.

For compressible flows,attempts to distinguishFavre grid- and test-filteredquantities

resultin cumbersome notation. Therefore, we adopt the simplifyingconvention that,forany

twice-filteredquantity,the firstand second filteringoperations are presumed to correspond

to the test and grid filters,respectively,which may have differentcutoffs. Following this

convention, the resolved-turbulent-stresstensor is

z:k,= - (20)

and its thermal counterpart is

(21)

4.3 Generalized Clark Model (M3)

Using Taylor-series expansions of the filtered velocity fields in terms of the unfiltered veloc-
,! r

ities, Vreman et al. [7] derive the gradient model

• 1 -2 _k_

Tkl --_/_ __ -[- O(A4) (22)

(The negative sign is included for consistency with our definitionof the residual stress

(Eq. 11)). Their model generalizesthat of Clark et al. [6] to compressible flows. Crit-

icism of the use of Taylor expansions by Love [11] has been addressed in Vreman et al.

[7].Here, our purpose isnot to defend or refutethe Taylor-seriesapproach, but simply to

evaluate the proposed model by a priorianalysis.



5 Test C e, Decaying Isotropic Turbulence

We consider the decay of an isotropic turbulent compressible flow, Specifically, the test case

corresponds approximately to case ire96 of Blaisdell et al. [12], whose parameter values are

restated below for completeness.

Re = 166.

./9/=1,0

T:o = 300K

(23)

where

u_ =

P;

(24)

and the subscript "0" refers to spatially averaged values at the initial time. For reasons of

computational efficiency, the computational domain is a cube of edge length'2_r, with _odic

boundary conditions in each coordinate dimension. The flow is initialized with the top-hat

energy spectrum shown by solid line in Fig. 3, for which the phases are prescribed randomly.

Whereas Blaisdell et al. [12] exploits a po_ver [a_r thb viscosity mallei, _enti0ned

previously, we employ Sutherland's law. As a consequence, some of our initial parameters

differ marginally from those published in Blalsdell et al. [12]. The initial turbulent Much

number Mt - _/<.,.ukuko, >/_/7 < P > / < P > -- 0.7. Here, angle brackets denote volume

averages over the entire dom_(e.g., < u >=: ), :and = uk- < pub > / <

p >. (Throughout this work, volume averages are computed by multidimensional trapezoid

rule, which is spectrally accurate whenever the fields are spatially periodic). The flow is

then allowed to evolve without further forcing. The temporal evolution of total kinetic

It. tl

energy TKE = 0.5 < pu_u k > and turbulent Much number Mt are shown in Figs. 4 and 5,

respectively. Energy spectra E(k) at selected times are compared with the initial spectrum
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in Fig. 3. Here, k = [k[ = _/k[ + k_ + k32, where k = [kl, k2, kz] is the wavenumber vector in

Fourier space.

6 DNS: A Priori Testing

The governing equations (Eq. I) are solved by efficientpseudospectral methods using the

algorithm developed by Obrist [13]for his Diploma thesisat ETH under the directionof

the second author. The uniformly-spaced computational grid uses 96 points (48 Fourier

modes) in each coordinate dimension. Because the flow iswell resolved at the 963 resolution

for the particularparameter values of interest,no explicitdealiasingisnecessary (nor isit

desirable).Time is advanced fullyexplicitlyby the third-orderlow-storage Runge-Kutta

method of Williamson [14].

As noted in Blaisdellet al. [12],the Reynolds number of the Simulation isinsufficiently

high to resultin a distinctinertialsubrange with a characteristic-5/3 power-law decay. The

temporal evolutionof the spectrum of the present simulation isshown in Fig.3. All analyses

are performed at dimensionless time t = 1.51. For completeness, Figs. 6, 7, and 8show the

temporal evolution of the turbulent Reynolds number ReT, the Taylor microscale An, and

the Taylor microscale Reynolds number Rex, which are defined,respectively,as follows:

o- = .-. >2
ReT : _< llUk_k

< pi_ >p=
<p>

- >

(25)

! I
_ _ UkUk >,x_= - _, - (26)

Rex = Re < p > qAltp (27)
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J

(2,1) 10.2862]

(2,3) ] 0.2928 1

(3,2)i
(3,3) 0.3 t

Table h Taylor-micr0scale components at dimensionless time t = 1.51.

q -
.<p >

Note that q is a turbulent velocity scale, for which TKE = q2/2, and that • is the turbulent

dissipation rate. Like B!_ell et al. [12] we observe two distinct microscalea. The diagonal

components of _ are consistent as are the off-diagonal components , as shown in Table 1. In

general, the diagonal components are larger by 20-40 percent. Also as observed by BlaiedeU

et al. [12], the microsca_ diminishes at firstiand then grows gradually. For co_p_ with

:the results of BlalsdeU et al. [12], for which time is typically given in units teo/(TKE)o, we

note that our dimensionless time should be scaled by a factor of approximately two.

Fig. 9 presents contours of constant _'11 in an arbitral" y selected z - p plane that corre-

sponds to z - 0.6545. The residual-stress component is computed exactly by grid-filtering

the DNS results according to Eq. 11. Fig. 9 further compares the exact residual stress com-

ponent with contours of the corresponding components of the Smagorinsky (M1, Eq. 15),

similarity (M2, Eq. 18), and generalized Clark models (M3, Eq. 22), respectively. For M2,

which requires twice filtered quantities, the cutoff values for the grid and test filters are

_¢- 1r/2 and _c - 0.93, respectively, iFig, 9 clearly reveals model M2 to be much more

highly correlated to the exact residual stress (E) than either M1 or M3.

The numerical values of these correlations are summarized in Table 2 for all components

of _'_l. In particular, Table 2 presents correlations of the form C(E, M) between the exact
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(1.91,_'/2) C(E, M1) C(E, M2) C(E, M3)

rll 0.066 0.977 0.619

T12 0.182 0.975 0.650

rls 0.125 0.978 0.546

v22 0.081 0.976 0.609

7-23 0.113 0.978 0.540

r3s 0.214 0.980 0.412

(7r/2,0.93) C(E, M1) C(E, M2) C(E, M3)

rn 0.067 0.910 0.474

I"12 0.183 0.906 0.518

113 0.116 0.913 0.432

r22 0.082 0.908 0.461

7"2s 0.102 0.913 0.427

rss 0.199 0.921 0.314

Table 2: Correlations between exact (E) residual-stress fields v_t and their modeled (M)

counterparts, for case of differing grid and test filters, whose respective parameters ac are

provided in upper left box of each block.

(E) and modeled (M) residual-stress fields for the three models under consideration. Here,

we define the correlation coefficient C between any two fields u and v in the customary way

as follows:

< uv > - < u >< v > (28)
C('U,'V) = [(< U2 _' -- <'fJ, >2)(< _2 > __ < IY >2)]1/2

In general, we observe poor correlations (typically C < 0.2) for M1, moderately high corre-

lations (C _ 0.6) for M3, and remarkably high correlations (C > 0.9) for M3. Two filtering

operations are required to evaluate M2. Thus, the two values that appear in the upper left

box of each block of Table 2 correspond to the respective cutoff values for the grid and test

filters.

Fig. 10 and Table 3 present similar results for the residual-stress components Qk (Eq. 14)

with their modeled (M1,M2) counterparts MQk (Eq. 17) and qk (Eq. 21), respectively. The

same levels of correlations observed for components of the SGS-stress tensor are observed

also for the thermal stresses.

It is well known that scalareddy viscositymodels (e.g.,MI) do not perform well in
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(i_91,_'/2) O(E, M2)

Q1 0.106 0.977

Q2 0.109 0.976

Q3 0.236 0.974

(_r/2,0.93) C(E, M1) C(E, M2)

Q1 0.10_1 0.9i2
Q2 0.110 0.911

Q3 0.213 0.912

Table _3: Correlations between exact (E) energy residual fields Qk and their modeled (M)

co!lnterparts, for case of differing grid and test filters, whose respective parameters ac are

provided in upper left box of each block.

anisotropic flows (e.g., Compton and Eaton [15]) because the shear stress and the mean

strain are misaligned. However, the component-wise variation of the correlations C(E, M1)

in Tables 2 and 3 comes initially as a surprise. For isotropic turbulence, one expects the

correlations to be nearly the same across all components. Statistical isotropy, however, does

not imply instantaneous isotropy. Numerical experimentation with different random initial

conditions and a priori analyses at different snapshots in time reveal these variations to be

manifestations of instantaneous anisotropy. On the other hand, the similarity model (M2)

appears relatively insensitive to anisotropy.

Liu et al. [4] found Bardina's [10] model to yield the highest correlation coefficients.

Accordingly, Fig. 11 presents contours of the exact (E) and similarity (M2) modeled (2,3)

components of the residual-stress tensor for the case in which the grid and test filters are

identical, each with ac = _r/2. In this case, the correlation C(E, M2) attains a surprisingly

high value, in excess of 0.99. Table 4 below summarizes the correlation data for various values

of the cutoff czc, which is given in the upper left box of each block in the table. The correlation

coefficients of the form C(E, M2) range from a low of 0.86, for an extremely dissipative filter,

to 0.999, for a very mild filter. As expected, the less dissipative the filter (i.e., the higher

kc), the higher the correlation coefficient. In addition to correlation coefficients, Table 4

also indicates the ranges (maxima and minima) of the exact and modeled residual stresses.

From these extrema, we make two important observations. First, the magnitudes of the
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components of the ezact residual-stress tensor r_ depend significantly on the value of the

cutoff c_c. Second, whenever identical grid and test filters are exploited, r_l is apparently well

approximated by Eq. 18 with cL _ 1.0, provided the filter is not too dissipative. Tables 2

and 4 reveal that the fidelity of all three models appears to deteriorate as the filter becomes
i

highly dissipative (although the correlations for M1 are so poor that any effect due to filter

tuning is difficult to assess).

Toprovide additional insight, _e 5 presents corrections of the _, C(E, M) for the

case where the grid fiiter is of fourth order, as dis_m _tf0n 2. F_ M2the _t_ filter is

of second order, so that the grid and test filters are of differing orders. The values shown in the

upper left box of each block of Tabie 5 cor_pond to the cutoff_ues _c for the grid and test

filters, respectively. In general, component-wise eorrelations for the generalized Smagorinsky

model appear to drop below their previously low values, as suggested by a comparison of

Tables 2 and 5. Moreover, correlations of the _ C(E, M2) drop dramatically to range

from 0,5 to 0.7 depending upon the values of the grid, and test-filter cutoffs. The poorest

correlations for M2 arise when the respective cutoffs are different. Curiously, M3 correlates

as well or better for a fourth-order grid filter as it did for a second-order grid filter. This

may suggest that the fourth-order term in Eq. 22 is significant.

Finally, we consider the effect of the order p_ of the grid filter on the azac_ residual-

stress tensor. Figure 12 compares the exact (2,2)component of _| for grid filters of different

orders and cutoffs. The first grid filter is of second order with C_c -- 1.16; the second

is of fourth order with _c "- 1.71. Contours are displayed at z _- 0.6545. Clearly, the

stress distribution is _d-filter dependent. _To quantify this dependence, Table 6 presents

correlation coefficients of the form C(E2,E4), where E2and E4 refer to exact quantities

computed by second- and fourth-order grid filtering, respectively. All components show the

same level of correlation, nominally 0.54. We conclude that the exact residual stresses depend

on the selection of the grid filter in both their distribution and their scale.
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c_c = 2.21

7"11

I"12

I"13

C(E, M2)

0.997

0.997

0.997

0.997t"22

r2s 0.997

'/'33

Otc -" ?r/2

TII

I"12

0.997

I C(E, M2)
, 0.992

0.992

v13 0.993

r_ _ 0.992

Emax I Emi.
0,1i2F_,-02 =":.654F_,-02

0:315E-02 ::,288F_,.02

0.348E-02-.291F_,-02

0.954F_,.03: -.728E.02

0,270E-02 _ ::.225F_,-02

0.00 ,:.fl6!F_,-01
0.772E.-02: _,648E-02

0.847E,-02 -:621E-02

0.00-.167F_,-01

M2max

0.896E-03

0.271E-02

0.298E-02

0.782E-03

M2min

-.572E-02

-.247F_,-02

-.246E-02

-.614F_,-02

0.240F_,-02 -.200E-02

0.433E-03 -.489E-02

M2min

0.00 -.125E-01

-.512E-02

M2max.

0.620F.,-02

o.653e-02
0.00

-.469E-02

-.122F_,-01

_'2s 0.993

rss 0.994

ac = 0.93 I C(E, M2)
r,, 0.9 b
r12 0.969

0.664E-02 :i-:560F_,-02 0.516E-02 -.432E-02

0.001 _.138E-01 0.00 -.107F-,-01
,,I =

] Em_ _ ., Emin, ] M2max. [i M2min

0:00 '.315E-01 0.00 -.188E-01
0.151E-0I i-,130E-01 0.890E-02-.854E-02

1"13 0.975 0.168E,-01 -.105E--01 0.105E-01 -.666F_,-02
, ,i,

0.968 0.00 i,.298E-01 0.00 -.210F_,-01

0.975 0,133E,-01_ _101E-01 0.900E-02 -.624F_,-02

7"22

v22

Vss 0.978

I ac = 0.45: C(E, M2)

rn 0.861

7-12 0.872

"r_s 0.887

"/'22

T23

rss 0.901

0.00 _ -.270F_,-01 0.00 -.162F_,-01
i - " '"!' 'i

Emil i:: -Emln M2m_ [i M2min

0:0(I_ _-,_SE-01 0.00 -.186E,-01

0,217F_,-01_ _-_201F_,-01 0.101E-{_]. -.911E-02

0.25:_i 161E-01 0.I38E-:0!;.-.109E,-01
0.865 = :O:00L :_iliA88E-01 0.00 -.285E-01

0.890 0.217E--0i_' _.t43E-01 0.974E-02 -.888E-02

0.01_ i_:.-413E-01 0.00 -.226E-01

Table 4: Correlations between exact (E):_!i_tl_ fields r_t and their similarity modeled (M2)

counterparts, and maximum and minimum _ orE :and M2 fields, for case of identical

grid and test filters, whose parameter ac is provid_ in upper left box of each block.
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• •

/r_ ¸ ,

i

T_
q, r r

! (1_z,!6)

rn - . _038 _ ':_0,_2_4 _-_ 0.638

rl2 0.105 • 0.727 0.668
_ 0.099 0.710 0.566

'" 046 -0 _-_" ....._ " " - O: . :_ ,_ _:; 0,630

, . i . . ITj

0.101 • o:¢ts:_-_ _15'59
_. 0.0491__ ' 0._-" .... o.6_
_ O.O_i-_-_ _.6_-"_ 0.554

_,_:-_;0.I76i !: 0_4 ._ 0.425

_,u _• _ 03_ ....... 0.599_ _;_" 0.654

_ .] __ 0.,054 . :-":_0,_ ::_ 0.613
"r= _ :. 9.098 ..........-_0_,__.•:- _ 0.545

rn - _ i 0.i79. "_i'i_¢._.r_ /_ 0.416

"r_a _: 0:101 _ -0,621 " ' 0.559

.= _ _:0,_0,t9 _" ' 0,531] " 0.626

r= 0.098 . _ 0:523 0.554

r_ _ _-0.176 _- 0.529 0.425

Table 5: Correlations between exact (E) residt_elds andtheir modeled (M) counterparts,
for case with fourth-order grid filter and second-ord_ test filter, whose respective cutoffs _¢

are provided in upper left box of each block.
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(1.16,1.71) C(E2, E4)

r_ 0.548

_'_ 0.548

_'_a 0.536

v22 0.546

r2a 0.538

_'sa 0.544

Q1 0.537

Q2 0.539

Qa 0.535

Table 6: Correlations between exact residual-stress components computed by second-order

(E2) and fourth-order (E4) grid filtering, whose respective cutoffs ac are given at upper left.

7 Discussion

In the 'cdnventional practice of LES, the grid filterand the SGS-model have often been

treated as ifthey were independent choices (asobserved by Piomelli et al. [16]).In contrast,

a prior/analyses with a continuously tunable filterrevealthat the filter,the exact SGS

stresses,and the model are closelyinterrelated.Thus, the filterand the model should not

be specifiedindependently.

For reasons of practicality, our computational study was limited to a single test flow at

a relatively low ReA, much lower, for example, than the value ReA = 310 in the experiment

of Liu et al. [4]. It is natural to wonder if the high correlations observed for the stress-

similarity model (M2) generalize to other flows and to higher ReA. Several considerations

suggest an affirmative answer. First, correlations of 0.85 were observed for M2 in the phys-

ical experiment of Liu et al. [4] whenever identical second-order grid and test filters were

exploited. Second, by comparing Fig. 8 and Table 7 below, one observes some dependence of

the correlation coefficient on ReA, but it appears to be relatively weak. Third, with identical

second'order Pade grid and test filters each of C_c -- lr/2, Adams et al. [17] have recently

observed correlations well in excess of 0.90 for DNS of a forced turbulent Mach 3.0 boundary-

layer flow along a compression ramp, for vcliieli:Re_ grows from a value of 47 in the incoming
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.127

.287

.644

.829

.977

1.08

1.18

1.24

1.40

1.51

0.966

o.gn
0.978

0.982

0.985
0.987

0.988
0.989

0.991

0.992

Table 7:Time evolutionofcorrelationcoe_emnts ofthe form _'1i, £u)for identicalgrid

and test filters with a¢ = 7r/2.

boundary layer to 326 midway up the compression ramp. Moreover, even with a much more

dissipativefilter(ct¢- 0,53),correlationson theorder 0.8 are observed.Itisimportant to

note that,incontrastto the_esent _ case,theflowconsideredby Adams etal.ishighly

anisotropic,highlycompressible,and wall-bounded.

8 Conclusions

The decay of isotropicturbulencein a compressibleflow isexamined by directnumerical
_ _ .... , _ _i_ i " " . _'_

simulation (DNS). ,4 priori analyses of the DNS data are then performed to evaluate three

candidatesubgrid-scalestress(SGS) models forlarge-eddysimulations(LESi:thegeneralized

(compressible)Smagorinsky model (M1) of Zrlebacheret al'_[8],the stress-slmilaritymodel

(M2) of Liu et al. [4], and the generalized Clarlc model (M3) of Vreman et al. [7].

The focusofthe study isan examinationof theeffectofthe gridand testfilterson the

fidelityof the models. For thispurpose, tunable,one-parameterfiltersof Parletype are

exploited.Tunable filtersare desirableforLES in that they allowthe cutoffwavenumber

kc to be specifiedindependentlyof the gridresolutionAx. In our view,thecutoffshould

be selectedon the basisof physicalconsiderationsand the gridresolutionon the basisof

mathematicalones.
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In the a priori analyses, the modeled residual stresses are t:orrelated against their exact

counterparts for selected values of the cutoff wavenumber ke of the filter. On the basis of

these results, the following conclusions are offered:

I. The distributionand the scaleofthe exact residual,stresstensor r_ldepends strong_ on

both the cutoffke and the order property of the gridfilter.This dependence ispartially

revealed by the simple recognitionthat the residualstressesmust vanish entirelyin the

limitas kc _ ks,where ks isthe Kolomogorov wavenumber. Consequently, in general,

no SGS-stress model can be independent of the grid filter.In particular,there is no

universalSmagorinsky constant; the constant necessarilydepends of the characterof

the grid filter. _.,

2. Correlationsofthe form C(E, M) between the exact (E) and modeled (M) SGS stresses

are typicallyvery high (C > 0.9)forthe stress-similaritymodel (M2), moderately good

(C _ 0.6) for the Clark model (M3), and poor (C < 0.2) for the Smagorinskym_lel

(M1).

3. For each of the three models, higher correlations C(E, M) are observed for less dissi-

pative grid filters and vice versa. This is an expected result because (for a fixed grid

resolution) dissipative filters are characterized by relatively low cutoff wavenumbers ke,

which in turn results in more energetic subgrid scales of motion.

4. Model M2 performs remarkably wellin a priori tests provided the grid and test filters

have the same order property. The highest correlations, well in excess of 0.90, are

obtained for M2 whenever the grid and test filters are identical. If the grid and test

filters are identical and the filtem are not too dissipative, model M2 appears to capture

not only the correct distribution of stress but also the correct amplitude whenever the

model constant CL = 1.0. This result numerically replicates Bardina's [10] result, albeit

for compressible flow.

5. The present results for models M1 and M2 are consistent with the experimental find-

ings of Liu et al. [4], who did not consider M3.
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6. Whereas models MI_ and M3 appear to degrade whenever the flow is instantaneously

anisotropic, model M2 appears relatively insensitive to anisotropy.

As a concluding thought, we acknowledge the well-known experience that both Bardina's

model (e.g., Liu et al. [4]) and Clark'sr m_del (Vreman et al. [5]) are insufficiently dissipative

for practicat_applieations - to LES. _ver, in our view, the physics and the mathematics

of LES need decoupling.-It appears increasing likely that stress-similarity models (M2, for

example) capture the physics (e.g., backscatter) with high fidelity. That such models "blow

up" in practice is not surprising in light of Fig. 1. The physical viscosity, which dampens

the highest wavenumbers in DNS, is in_ective in LES at the cutoff wavenumber k¢. We

conclude that the instability of similarity models is ultimately a mathematical issue, not a

physical one.
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Appendix: One-Parameter Pade Filters

Let f be a vector containing n + 1 values f_ = f(z_) obtained by sampling a continuous

function f(x) at a set of equally spaced nodes xi = x0 + iAz, i = 0,1,...,n. Further let

= Lf denote the vector of filteredvalues obtained by applying the linearfilterL to f.

Here, we consider Pade filters,for which L = M-IE, whereby Mf = Ef, and M and E are

banded matrices.

Second-Order Pade Filters

Following Lele [3], a second-order, one-parameter (C) Pade filter is constructed by considering

the symmetric pointwise scheme

b

_J_-I + _ -_ _J_+1 = afi "4- _(f,-I ÷ fi+1) ; (i = I, 2,...n - I) (29)

Various treatments are possible for the boundary nodes i = 0 and i = n. However, the sim-

plest approach, sumcient for our present purposes, is to impose no filtering at the boundaries.

For the second-order Pade scheme, M and E are tridiagonal matrices.

It is instructive consider the action of the filter of Eq. 29 on the single Fourier mode

exp(_kx) (_ -- Vr'ZT), from which we obtain the complex transfer function

a + bcos(a) (30)
= 1 + cos(a)

where a - kAz. For a fixedgrid increment Az, the transfer function definesthe action of

the filteron modes of wavenumber k. For applicationsto LES, we consider only low-p_ss

filters,for which H(0) - 1 and H(_r) - 0. In combination, these two constraintsimply that

b = a -- 0.5 + (. Admissible values of the parameter are -½ < _ _< ½. Whenever _ = 0,

M is the identitymatrix, and the filterissaid to be fully ezplicit.The fullyexplicitcase

corresponds to a discrete top-hatfilterwith weights at adjacent nodes of [I/4, 1/2, I/4].

Otherwise, the filteris implicit.The value _ = _ yieldsM E, which turns off the filter.

For alladmissible parameter values,the matrices M and E are diagonally dominant with

positivediagonal elements, in which case the operator L ispositivesemidefinite.
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By analogy to discrete differentiation: operators, to _ d_te filter is associated a

Taylor-series expansion of the form

j _ AX3 tm r_/(zd =/(z,) + alAz/'(xd + a A=2f'(z,) =3,= ,j + ... (31)

Here, for notational simplicity, the f__ in the Taylor expansion have been absorbed

into the coefficients aj. By applying theTaylor-series representation of the filter to exp(tkxi),

we obtain the corresponding Taylor series of the transfer function, namely

Equating successive derivatives of the two forms of the transfer function (Eqs. 30 and 32) at

a = 0, yields the coefficients aj of the transfer function. Thus, the Taylor-series expansion

of the filter implies the transfer function and vice versa. For the Pade filter of interest, the

first two coefficients are

al = H'(o) = o

_ 1 2¢ (33)
-2a2 - H"(0) - -_ + 1 + 2---'-_

In general, a _dter is said to be of order m if the first non.vanishing coefficient of its

Taylor-series expansion is a_. Thus, the Pade scheme is of second order (provided ¢ # 0.5).

Equivalently, a filter is of order m if all derivatives of the transfer function of order less than

m vanish at the origin. In general, filters associated with symmetric stencils (and coefficients)

are of even order with purely real transfer functions. As a consequence, they filter without

phase error.

As clearly indicated by Eq. 33, the coefficients of the Taylor-series expansions Eq. 31 and

Eq. 32 are functions of the parameter. To quantify this dependence, we define ac, the cutoff

wavenumber, such that

C- H(a,) = (1 + 2¢)(1 + cosa,)
2(1-I: 2_' cos a.) (34)

where 0 < C < I but is otherwise arbitrary. (In signal processing, it is customary to define

the cutoff such that 1/2--- IH(o_)I2.) Eq. 34 relates the original parameter ¢ to the cutoff

23
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wavenumber 0 < ac _< 7r. The (unconventional) choice C = i/2 yields the particularly useful

relationship 2¢ = -cos(at), which in turn yields , k

= (t- cos + cos ) (3s)
2(1 - cosac cos a)

Fig. 2 in Section 3 compares the transferfunctions of the variable Pade filterfor selected

values of the cutoffac.

Fourth-Order Pade Filters

We adapt the three-parameter, symmetric, fourth-orderfilterof Lele [3]whose M and E

matrices are penta- and hepta-diagonal, respectively.The pointwise scheme for nodes i =

2,3,...,n - 2 is

b c d

/_j/'i-2+¢JFi-l+f'/+¢j_+l+/_J_+2+ =afi+_(f,-l+fi+l)+ _(fi-2+/i+2) +_ (f,-z+f,+s) (36)

where

a = +(5 + 6(- 6/_+ 16d)/8

b = +(1+2¢+2/_- 2d)/2

c = -(1 - 2¢- 14/_+ 16d)/8

(37)

(38)

By enforcing c = d = 0, one arrivesat a one-parameter, fourth-order filterwhose matrices

M and E are penta-diagonal and tridiagonal,respectively,and for which/_ = (1 - 2¢)/14.

The stencilisclosed by imposing no filteringat the boundaries and by using the explicit

fourth-order formula below at the gridpoint adjacent to the boundary point.

ft = _fl + _--_(fo+6f2-4fs+ f4) (39)

An analogous formula is used at gridpoint n - 1. Admissible values of the parameter are

_2 < ¢ < ½. (Gerschgorin's theorem guarantees positivity only for-_ < ( < _.) A

linear relationshipbetween the originalparameter ¢ and -I <_ cos(at) < 1 establishes

12¢ = -[1 + 7cos(at)I,which definesthe cutoffwavenumber ac in terms of ¢.
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Figure 1: Kolmogorov energy spectrum for idealized LES.
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